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ABSTRACT

Incorporating weather forecasts in the control of land surface water levels requires predictions of the

net inflow to the water system. This net inflow is the combined flow of an incoming load (rain,

evaporation, etc.) and outgoing pump rates. Because the pump costs are considerable, optimal

pump schedules have minimal energy consumption. Model predictive control (MPC) is able to

compute, revise and apply such optimized schedules by incorporating a model of the water system.

The pumps typically cause discontinuities in the model, which leads to mathematical complications.

Avoiding advanced solving techniques for these hybrid systems, this paper introduces an alternative

that enables pure continuous MPC by smoothing the jumps. Although the resulting underlying model

is continuous, it is also highly nonlinear. This requires use of the specialized class of nonlinear model

predictive control (NMPC), which is able to cope with the arising nonlinearities. Control inputs

computed by these methods can be translated to the original hybrid system by a final post-

processing step. This paper presents the outlined scheme, and verifies it by applying an optimized

NMPC implementation (the DotX nonlinear predictive controller, DNPC), equipped with the

approximated continuous nonlinear model, to a real-life hybrid water system.
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INTRODUCTION

Controlling land surface water levels is essential for avoiding

floods and droughts. The Netherlands, with half of its land

lower than 1 m above sea level, strives for a balanced surface

water level by using an extensive system of pumps and man-

euverable dams. This work focuses on controlling the water

level in a specific region (a Dutch polder) in the north-west

of the country, called the Waterlandse Boezem. This area is

equipped with a set of pumps, all with their own character-

istic capacity, which are used to deal with excesses of rain

water.

Recently, new initiatives have emerged, like Delft-

FEWS and the controlNEXT project (Roos et al. ),

which facilitate data exchange between different hardware

systems and data pools such as weather predictions.

Control systems responsible for activating the pumps now

actually have access to such data. Due to advances in

meteorological modeling, increasing interest is now given

to the incorporation of weather forecasts into pump con-

trol decisions. For example, when a storm is imminent, it

is beneficial to start draining in advance to avoid floods.

Similarly, in the case of an upcoming drought, it is desir-

able to halt pumping, even during momentary rainfall. To

achieve such planning objectives, the controller needs to

predict and incorporate the net inflow to the system

given a specific weather prediction. Classical feedback con-

trollers do not have this capacity and are inadequate to

achieve these objectives. The more advanced class of

model predictive control (MPC) methods typically predict
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water levels based on a continuous linear model of the

system (Jowitt & Germanopoulos ; Ormsbee &

Lansey ; Yu et al. ; McCormick & Powell ).

Based on these online model predictions, MPC methods

are able to compute, revise and apply optimized pump

schedules.

Increasing the complexity of the mentioned planning

issue, the pump’s practical limitations impose constraints

on the schedules, which the controller must obey.

Actuator constraints

The pumps at the Waterlandse Boezem have a few charac-

teristics that are very common in pump scheduling

problems. They can, in generalized form, be summarized

by the following:

A1. There are a discrete number of pumps (say N), each

having a different capacity (in m3/s).

A2. Pumps need to be activated in a predetermined order,

i.e. when pumps are ordered with index k¼ 1,…, N,

then pump k can only be turned on when pump k! 1

is active.

A3. Each pump needs to be turned on or off for a time inter-

val lasting at least D (for instance, D¼ 4 hr).

The total pump flow over time, defined by the sum of

the rates of all individual activated pumps, becomes inher-

ently discontinuous by these three restrictions. A pump

either pumps at zero or full capacity, and, when turned

on, makes this transition instantly. Hence, a model

capturing these dynamics exhibits both continuous and dis-

continuous behavior and is often referred to as a hybrid

system.

Besides these constraints, the controller needs to have

clearly defined control objectives, so it knows which

behavior to strive for.

Control objectives

At the Waterlandse Boezem these objectives, which are typi-

cal for hybrid water systems in general, are the following.

B1. The water level needs to stay between predetermined

boundaries.

B2. The energy consumption, caused by active pumps,

needs to be minimal.

B3. Pumping is preferred during low-cost energy hours

(typically at night). However, this should not cause

the water level to flow out of its bounds.

Note that these sub-objectives are possibly conflicting:

pumping is needed after a heavy downpour to avoid a

flood; however, the energy consumption will increase

when pumps are turned on. By careful selection of key par-

ameters, MPC can be tuned such that it weighs the

importance of each goal and strives for balanced pump

schedules.

The resulting optimization problem in MPC, defined

by minimizing a quantification of the aforementioned

objectives in terms of the hybrid system, is typically

posed as a mixed integer program (Van Overloop et al.

; Van Ekeren et al. ). Solving these problems

requires advanced techniques (De Schutter & van den

Boom ; Axehill & Hansson ; Axehill ).

This paper introduces an alternative for such methods

by smoothing the jumps and applying standard continu-

ous MPC to the resulting continuous system. Such

approximations yield nonlinear terms in the model

equations, which implies a specialized subclass of con-

tinuous nonlinear model predictive control (NMPC)

(Kouvaritakis et al. ; Tenny et al. ; Bacic et al.

) is needed. Recent developments have given NMPC

guaranteed robustness and stability (Findeisen &

Allgöwer ; Findeisen et al. a, b), which are

essential characteristics for feedback controllers.

This paper presents how the constraints (A1–A3) and

objectives (B1–B3) can be translated to an MPC framework

(based on the approximated smooth model). In order to

illustrate the effectiveness of the presented scheme, we

have utilized a commercially developed NMPC implemen-

tation, called the DotX nonlinear predictive controller

(DNPC) (Schuurmans a, b; Nederkoorn et al.

a, b), to generate pump schedules for the Water-

landse Boezem in a closed-loop simulation environment.

The results of the simulations indicate that the outlined

scheme can yield solutions to the pump scheduling problem

satisfying the constraints and objectives. Moreover, in this

simulation environment, there are potential advantages
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over other (classical) control methods in terms of energy use

and water-level control.

Outline

This paper first introduces a continuous, nonlinear reservoir

model of the hybrid system. This system can be used as the

underlying model for NMPC, as explained in the section on

applying nonlinear MPC. The outlined strategy is evaluated

by numerical simulations of the Waterlandse Boezem in the

section on numerical results.

NONLINEAR RESERVOIR MODEL

The rate at which water is added or drained from a water

system on a time interval [0, T ] (by, for instance, rainfall

or evaporation) is called the load prediction Ql(t) (in m3/s)

and is a key forecast parameter in water management. Let

the surface water level itself (in meters) be defined by w(t).

This quantity is usually measured with respect to some stan-

dardized level (the Nederlands Algemeen Peil (NAP) is the

standard level at the Waterlandse Boezem). The rate

at which the pumps drain water from the system at time

t∈[0, T ] is defined by Qp(t) (in m3/s). Given the total

area of the water surface A (in m2), consider the following

reservoir model of the water system:

_w(t) ¼
1

A
Ql(t)!Qp(t)

 !

, w(0) ¼ w0 (1)

where w0 is a given measurement of the water level at t¼ 0.

Let a pump have a fixed capacity c (in m3/s). Recall that a

pump either operates at zero or full capacity, which makes

Qp(t) a discontinuous function with jumps when a pump is

(de)activated. Therefore, even though the underlying

model for w(t) in Equation (1) is continuous, the dynamics

of the right-hand side function are inherently discontinuous.

As mentioned, continuous MPC methods fail to cope with

such hybrid models.

In order to circumvent these obstacles, this work splits

Qp(t) into smooth building blocks. A properly chosen com-

bination of these blocks, or ‘pump actions’, yields a

continuous approximation of the pump demand. Because

the discontinuities no longer exist in the approximated

model, it can be used for standard continuous MPC.

Pump action

The pump demand caused by turning a pump on and off on

[0, T ] is called a pump action. Note that pumps can have

multiple pump actions on the specified interval. Let

s∈[0, T ] be the moment the pump action is initiated, and

let e∈[0, T ] be the moment the pumping stops. Recall that

a pump either pumps at zero or full capacity c, which

yields a discontinuity in the model that needs to be

addressed. Consider function Fc: R! [0, c], defined by:

Fc(p) ≡

0 p $ 0
2c

L2
p2 p $

1

2
L

!
2c

L2
p2 þ

4c

L
p! c p $ L

c p> L

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(2)

for some fixed L∈ℝþ. Figure 1 shows this function for fixed

L and c. Note how this function enables a smooth transition

from 0 (when p$ 0) to c (when p& L). Given a value of p∈R,

let the rate of the pump action be defined by Fc(p). This rate

smoothly transitions from zero to full capacity when p is

increased from a negative value to a value bigger than L.

Hence, the variable p enables a continuous switch for the

pump flow.

Figure 1 | Function Fc(p) depends on the dimensionless parameter p∈ℝ and realizes a

smooth transition between 0 and c capacity. In this example L¼ 1, c¼ 1.
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Combining these variables and functions: Fc(p) deter-

mines the rate of the pump, which is turned on at time

s (hr) and turned off at time e (hr). Note that if p> 0, and

therefore Fc(p)> 0, the pump flow still contains discontinu-

ities in time at s and e. Though these jumps do not cause a

jump in the modeled water level (because of the continuity

of the differential Equation (1)), they do limit the applica-

bility of MPC, which often needs continuous Jacobians of

all the functions in the model equations. Hence, in a

second smoothing step, these discontinuities at s and e

need to be removed.

Consider the following smooth approximation of the

Heaviside step function:

Φα(t) ≡
1

1þ exp(! 2αt)
(3)

with parameter α> 0. Applying this function to smooth the

jumps at s and e and combining this with the pump rate

Fc(p) yields the following pump rate for a pump action:

qα(s, e, p, c, t) ¼ Fc(p)Φα(t! s)Φα(! tþ e) (4)

Expressing the pump flow in such a way allows both the

jumps between pumping at zero or full capacity (modeled by

Fc(p)), and the jumps at times s and e (modeled by Φα(t! s)

and Φα(! tþ e)), to be approximated continuously. Figure 2

illustrates such a smooth pump action.

The next step in forming a continuous approximation of

Qp(t) is combining several of these smooth building blocks.

Combining pump actions

Let a pump schedule contain M pump actions, distributed

over N individual pumps. A pump action k is defined

by the set of variables (sk, ek, pk) and given fixed capacity

ck. The entire schedule can be written by the

triplet s ¼ (s1, . . . , sM), e ¼ (e1, . . . , eM), p ¼ (p1, . . . , pM)

and given fixed c ¼ (c1, . . . , cM). The combined pump rate

at time t is defined by:

Qα

p(s, e, p, c, t) ¼
X

M

k¼1

qα(sk, ek, pk, ck, t) (5)

For simplicity, consider the case M¼N, where each

pump has its own unique pump action on interval [0, T ].

In later sections, the outlined procedure will be extended

to the situation M>N.

In order for a pump schedule (s, e, p) to match all require-

ments (A1–A3), some constraints need to be imposed on the

schedule. Recall that a pump needs to be turned on or off for

at leastDhours (A3). This implies that the followingmust hold:

ek & sk þD (6a)

for k¼ 1,…, M. Moreover, pumps need to be turned on in a

fixed order (A2): pump two can only be active if pump one is

turned on, pump three only when pump two is active, etc.

Translating this requirement to restrictions on s, e and p is

threefold. Firstly, a pump kþ 1 can only be activated if pump

k is active:

skþ1 & sk (6b)

for 1$ k<M. In a similar fashion, pump kþ 1 can only be

deactivated if pump k is still pumping:

ek & ekþ1 (6c)

for 1$ k<M. Though this ensures that all pumpactions occur

simultaneously, it does not guarantee that all pumps are

Figure 2 | Example of a pump action, with variables s¼ 4, e¼ 12, p¼ L and parameters

L¼ 1, c¼ 1. Note how the pump flow is a continuous function in time.

Since p¼ L, we have Fc(p)¼ c by construction of the pump flow function in

Equation (2).
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activated in order. In addition to the previous constraints, set:

pk & pkþ1 þ L (6d)

for 1$ k<M. Note that Fckþ1 (pkþ1)> 0 can occur if and only if

Fck (pk) ¼ ck (Equation (2)). This implies that no pump can be

turned on if its predecessor is not, which is exactly the required

behavior.

Let (s, e, p) be vectors obeying the constraints in

Equations (6). By the limit of the Heaviside approximation

of Equation (3), the corresponding discrete combined

pump flow satisfies:

Qp(t) ¼ lim
α!∞

Qα

p(s, e, p, c, t)

This suggests that the continuous approximation of the

pumpflow is suitable forMPCwhen α is chosen large enough.

Resulting model

Substituting Qα

p(s, e, p, c, t) in the original model in

Equation (1) leads to the following system on [0, T ]:

_w(t) ¼
1

A
Ql(t)!Qα

p(s, e, p, c, t)
( )

, w(0) ¼ w0 (7)

Given variables (s, e, p), let w[s, e, p](t) be the solution to

(7). Though the differential equation is linear (there are no

cross terms of _w and w), the solution w[s, e, p](t) is not lin-

early dependent on the input parametrization (s, e, p).

Hence, by smoothing the jumps in Qp(t), we have sacrificed

the linearity of the system. Controlling the model prediction

w[s, e, p](t) of a pump schedule (s, e, p) requires the use of a

specialized class of NMPC, which is, as the name suggests,

able to deal with these nonlinearities.

APPLYING NONLINEAR MPC

In the MPC framework, we can restate the pump scheduling

problem as: given a load prediction Ql(t) on [0, T ] and a

measured water level w0 at t¼ 0, find (s, e, p), obeying con-

straints (6), such that the corresponding solution w[s, e, p](t)

of Equation (7) satisfies the control objectives (B1–B3) on

[0, T ]. In NMPC, these goals are quantified in an objective

function, often referred to as the cost function.

Cost function

This function Jα:(s, e, p)! R
þ assigns high values to

unwanted pump demands and low values to schedules satis-

fying the control objectives. Therefore, the cost function is

the objective for the overall optimal control problem:

mins,e,p∈RM Jα(s, e, p) (8)

subject to constraints (6). The cost function has one non-

negative output value; however, there are multiple optimal-

ity requirements (B1–B3). This implies Jα(s, e, p) must make

a trade-off between the different, possibly conflicting, optim-

ization goals.

Recall the first objective: keeping the water level

between predetermined boundaries (B1). In terms of the

model:

w! $ w[s, e, p](t) $ wþ (9)

for t∈[0, T ], where w! is the lower and wþ is the upper

boundary. A well-designed cost function has a large value

when w[s, e, p](t) does not satisfy (9), and a low value (pre-

ferably zero) when it does. Let R: ℝ→ℝ
þ be a smooth

function upholding this property (an example is illustrated

in Figure 3), then R w[s, e, p](t)ð Þ for t∈[0, T ] is a suitable

quantification of this control objective.

The cost function also needs to cover the energy con-

sumption (B2). Assuming there is a direct relationship

between the pumping rate and energy usage, then function

Qα

p(s, e, p, c, t), defined in Equation (5), is an ideal cost

measure for energy consumption. Additionally, in an opti-

mized schedule, most of the pump actions are allocated at

low-cost energy hours (B3). Let there be K energy peak inter-

vals on [0, T ] (typically daytime hours), defined by [tj, t
e
j ] (the

intervals start and end time in hours) for j¼ 1,…,K. Consider

the weighting function:

Wα(t) ≡
X

K

j¼1

Φα(t! tsj )Φα(! tþ tej )
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which is 1 during peak hours and 0 almost everywhere else.

Note that α corresponds to the same smoothing parameter

chosen earlier in this work. Figure 4 shows this function

on a typical prediction window. A suitable quantification

of the energy usage requirements B2 and B3 is the product

between Wα and Qα

p.

Combining the three objectives B1 and B2–B3 yields the

following cost function:

Jα(s, e, p) ¼
ω1

2

ð

T

t¼0

R w[s, e, p](t)ð Þ2dtþ

ω2

2

ð

T

t¼0

Wα(t)Qα

p(s, e, p, t)
( )2

dt

(10)

where fixed penalty parameters ω1, ω2 ∈ R
þ can be used to

shift the focus between the sub-objectives, thereby ensuring

a balanced pump schedule.

Applying NMPC for solving (8) with cost function (10),

constraints (6) and underlying model (7) yields optimal pump

schedules with respect to the approximated model. However,

the computed water levelw[s, e, p](t) might not match the sol-

utionw(t) to the original hybrid system (1). This difference can

be annihilated by adjusting the schedule slightly.

Post-processing

The points at which the original hybrid system differs from

the approximated system are the discontinuities in the

pump demand. The pump schedule computed by NMPC

allows pump actions to pump at half capacity (i.e.

0< pk < L), whereas the hybrid system has pumps either

turned on or off. Due to the design of the last of the con-

straints in (6), this can only happen to the pump action

turned on last. Such behavior violates the initial

constraints A1–A3 and needs to be addressed.

Several strategies can be deployed to solve this issue.

Firstly, after obtaining the total pumped volume of this pump

k from ŵ[s, e, p](t), we can easily extend the pump time of

pump k! 1 accordingly, causing the total pumped volume to

remain the same. A slightly more elegant technique adjusts

the number of pumps to N¼ k! 1 and requests the NMPC

solver to come up with a new optimal solution. This avoids

pump action k to be activated at all, and will drain the water

system with fewer pumps’ actions, all at full capacity. In prac-

tice, these two methods yield very similar pump schedules.

The smoothed discontinuities at times sk and ek cause

almost no difference between the two models when α is

chosen large enough. The symmetry of a pump action, as

Figure 4 | Function Wα (t) on a prediction window T¼ 36 hr (with α¼ 2). High-cost hours

are during the day between 7 am and 11 pm, resulting in intervals [7, 23] and

[31, 36].

Figure 3 | An example of a smooth function R(w(t)) withw!¼!1.55 m andwþ¼!1.53 m.

Note that R is zero almost everywhere when w! $ w(t) $ wþ, and becomes

large rapidly when w(t) approaches or passes through the boundaries.

251 E. Nederkoorn et al. | Continuous nonlinear model predictive control of a hybrid water system Journal of Hydroinformatics | 15.2 | 2013



illustrated in Figure 2, ensures that the total pumped volume

over time is the same in both the discontinuous and the

smooth pump demand. After the pump schedule (s, e, p)

has been adjusted for p, it can be used for a forward simu-

lation of the approximated model with α≫ 1. The resulting

ŵ[s, e, p](t) corresponds to the original hybrid system

(within a negligible error margin).

The scheme presented so far is able to generate opti-

mized pump schedules at a time t¼ 0. In real-time control,

such predictions need to be made at a sample frequency.

This requires a few extensions to the scheme.

Real-time control

Let the computed scheme (based on load prediction #Ql(t)

and measured water level #w0) at a moment #t be defined by

(#s; #e; #p). In real-time control, this schedule needs to be

revised at a subsequent time instance τ ¼ #tþ Δt using an

updated forecast Ql(t) and water level w0. The sample rate

is typically chosen such that Δt≪D to ensure complete

pump actions do not fall between two consecutive schedule

updates. The results section contains more on compu-

tational aspects of choosing Δt.

Note that, when at time ~t, pumps have already been

turned on, they do not need to be active for D hours on

the new prediction window. Hence, we need to incorporate

activation data from the schedule at #t in order to compute a

new schedule at τ.

Let m$M pump actions be active at τ, i.e.

#sk < τ, #ek > τ and #pk & L

for all k¼ 1,…, m. The new schedule cannot alter the start

times of these pumps anymore since they have been fixed.

For feasibility, we need to add the constraint:

sk ¼ #sk (11a)

for all k¼ 1,…,m. This might seem odd because sk appears

to no longer exist in the prediction interval [τ, τþ T ]. How-

ever, this restriction has never been required in this

scheme and we can safely impose constraint (11a). The orig-

inal constraints (6) will ensure that ek is chosen such that no

pump is turned on shorter than D hours in real time.

Though this forces pump actions to have the proper acti-

vation time and length, it does not guarantee that the new

schedule will remain pumping them at full capacity.

Consider the second additional constraint:

pm & L (11b)

which, in combination with the last constraint in (6), sets

pk & L for k¼ 1,…, m. By construction of the flow function

(2), we have Fck (pk) ¼ ck, which implies all desired pump

actions are at full capacity.

This concludes the theoretical outline of the receding

horizon scheme for real-time control of hybrid water sys-

tems. The last step in this work is to verify the method by

applying it to several load cases.

NUMERICAL RESULTS

The Waterlandse Boezem, an area of low-lying land in the

north-west of The Netherlands, would easily flood if its sur-

face water level were not controlled. Such regions are often

called polder (a word that originates from Dutch). There are

four pumps linked to the water system with an ordered

pump activation capacity {5.835, 4.25, 5.835, 4.25} m3/s.

The area of the water surface is roughly A¼ 1,059 × 104m2.

The water level has bounds w! ¼ !1:55 m and

wþ ¼ !1:53 m (with respect to NAP). In The Netherlands,

peak energy hours are between 7 am and 11 pm. Pumps

should be (de)activated for at least D¼ 4 hr.

Setting up the scheme

For the following computations, let L¼ 1. The Heaviside

parameter α needs to be chosen sufficiently large for the

approximation to align with the original hybrid system. In

practice, we let {αj} be a monotonically increasing sequence,

and consecutively solve the MPC problem for each αj. With

each iteration, let the starting point be the solution com-

puted in the previous step. Such strategies avoid local

minima of the optimization problem caused by starting out

with large α. After the final iteration is done, we can apply

the post-processing step of the post-processing subsection.
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The prediction horizon in these examples is T¼ 36 hr

and the sample rate is 0.25 hr. The larger the prediction

window, the larger the solution space of the optimization

problem, which leads to increased performance. In practice,

however, the window is determined by the availability of

reliable load predictions (which are typically around

24–48 hr). The sample rate might seem large for online con-

trol, but keep in mind that the process dynamics of these

water systems are inherently slow.

It seems reasonable that, in an optimal solution, a pump

k will have more than one pump action on the prediction

window. In the computations described below, we

have assumed a pump has no more than two active

intervals. Hence, there are eight pump actions to be planned

(M¼ 2N¼ 8). Let action k∈[1, 4] be the first set of actions

and k∈[5, 8] be the second. The first pump is activated at

s1, deactivated at e1 and turned on and off for a second

time at s5 and e5, respectively. The second pump is activated

on [s2, e2] and [s6, e6], etc. In order to maintain a minimum of

D hours between a pump being deactivated, add:

s5 & e1 þD

to the set of constraints. Keeping constraints (6) and (11) for

k∈{1, 2, 3, 5, 6, 7} will ensure that all pump actions are

planned under restrictions A1–A3.

Now the scheme has been set up, it needs to prove itself

numerically. This work deploys a commercial NMPC

implementation for computing the control schedules.

DNPC

DNPC is an optimized implementation of a stable and robust

NMPC scheme with applications ranging from the steel

industry towind turbine design. It can compute control actions

based on any nonlinear white model in state-space form:

_x ¼ f(x(t), u(t), t) (12a)

y ¼ h(x(t), u(t), t) (12b)

with state x(t) ∈ R
Nx , control input u(t) ∈ R

Nu and output

y(t) ∈ R
Ny . Additionally, DNPC has the option to parametrize

the input with variables d ∈ R
M, which determine the control,

now denoted by u(d, t). The benefit of using such a parametri-

zation is twofold. Firstly, it allows the user to incorporatemore

complex control definitions and secondly, DNPC is able to use

the input parametrization as optimization variables of the

underlying optimal control problem:

mind∈RM J(y(t), u(d, t), t) (13a)

subject to:

aTi d $ bi, i ¼ 1, . . . , K (13b)

where ai ∈ R
M and bi ∈ R define constraints on the input

parametrization d.

The approximated model and cost function presented in

this work exactly match this description. The input parame-

trization corresponds to the triplet (s, e, p), the control

equals the pump demand Qp(s, e, p, c, t) and the state and

output matches the water level w[s, e, p](t). This makes

DNPC a suitable tool for applying our numerical scheme.

Moreover, even though the scheme is computationally

intensive, the computation of a schedule using DNPC typi-

cally takes 10 s on a moderate central processing unit,

which is well within the defined sample rate Δt (of 15 min).

Sample loads

Consider a sample load case with constant rainfall over the

prediction window such that Ql(t) ¼ 5:835m3=s for t∈[0,

36]. Note that this rate equals the capacity of the first

pump exactly. A classical feedback controller, which keeps

the water level at set point, would activate the first pump

over the entire prediction window. Hence, this controller

would pump a total quantity of 761,467.5 m3, of which

435,874.5 m3 are during high-cost energy hours.

Figure 5 shows the results computed by DNPC,

equipped with the scheme presented in this work, for the

same load case. First of all, note that the modeled water

level never flows out of the specified limits. Though the feed-

back controller ensured a constant water level, our method

uses the entire bandwidth. Note that the schedule computed

by DNPC allocates most of the pump actions during low-

cost hours. However, it does start the second pump action

of the first pump (s5, e5, p5) in the middle of the day in
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order to prevent the water flowing over its bound. This sche-

dule pumps a total of 650,074.5 m3, of which 150,867.0 m3

are allocated during high-cost energy hours. Compared

with the feedback controller, this implies a reduction of

14.6% of the total pumped quantity and 65.4% of the

pumped volume at peak energy costs.

A next load case involves a heavy downpour in the

middle of the day:

Ql(t) ¼
15:92 if 16 $ t $ 20
0:00 else

+

Note that during this heavy rainfall, the incoming rate is

equal to the combined rate of the first three pumps. The

feedback controller from the previous example would main-

tain the water level on target by activating three pumps on

this exact interval. The corresponding pump schedule

pumps a total of 214,920.0 m3, all during peak energy hours.

Applying DNPC to this load case yields the results

shown in Figure 6. Note how the schedule only activates a

single pump twice, but still keeps the water level in its band-

width. The night before the downpour, the pump already

decreases the water level to the lower boundary. The

pump is activated a second time as soon as the water level

has reached the upper boundary, which prevents a flood.

Though the pump is activated during high-cost hours, it

only needs to pump a minor quantity during these intervals.

DNPC pumps a total of 220,563.0 m3, of which 78,772.5 m3

are at high-cost hours. Comparing this performance with the

feedback controller, DNPC has realized a reduction of

63.3% of the volume that needs to be pumped at peak

energy costs, while the total volume remains similar.

Figure 5 | Results of a pump schedule computation with a given load prediction Ql(t) on

an interval t∈[0, 36] (upper graph), with constant rainfall over the entire pre-

diction window. High-cost energy hours are between 7 am and 11 pm

(intervals [7, 23] and [31, 36]). The lower graph contains the computed pump

schedule where the sequence of pumps has fixed cumulative capacity (dotted

lines). The middle graph presents the corresponding water-level prediction

with its boundaries [!1.55, !1.53].

Figure 6 | Results of a pump schedule computation with a given load prediction Ql(t) on

an interval t∈[0, 36] (upper graph), with heavy rainfall during a short interval

during the day. High-cost energy hours are between 7 am and 11 pm (intervals

[7, 23] and [31, 36]). The lower graph contains the computed pump schedule

where the sequence of pumps has fixed cumulative capacity (dotted lines).

The middle graph presents the corresponding water-level prediction with its

boundaries [!1.55, !1.53].
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These two examples illustrate how the method outlined

in this paper uses the user-specified bandwidth of the water

level to compute an optimal pump schedule satisfying

A1–A3 and B1–B3. Moreover, it shows that a significant

reduction of energy costs over a feedback controller can

be achieved. This latter controller is not able to deal with

the complex requirements listed in this paper and is not

an adequate comparison with more complex load predic-

tions. In order to further test the scheme, it needs to prove

itself with data from more realistic situations.

Logic-based controller

At the time of writing, the outlined scheme has not been

implemented in the control system of the Waterlandse

Boezem. Instead, a logic-based controller operates the

pumps. Although constraints and objectives for this control-

ler are (similar to) A1–A3 and B1–B3, they have been

interpreted slightly differently.

First of all, the controller is designed to maintain the

water at a predetermined set point #w ∈ [w!, wþ]. This set

point differs throughout the day: it is closer to wþ during

high-cost energy hours and closer to w! otherwise. Such

strategy forces the pumps to pump less at peak energy

costs. The controller operates at a sample rate of 3 hr,

which avoids frequent pump (de)activations. At these

instances, a measurement of the current water level is

compared with the set point. Pump(s) are turned on if

the level exceeds the set point and turned off if the oppo-

site is true. Moreover, at every update instance, a load

prediction of 24 hr is obtained. Additional resources are

activated if the total volume of the forecast exceeds a

threshold.

Between two updates the schedule is reevaluated at a fine

sample rate of 0.25 hr by comparing a newly obtained water-

level measurement to its set point. If the water level is not

behaving as scheduled in the plan (for example, when the

water level is not going down though pumps have just been

activated), the next/last pump in the activation sequence

is (de)activated. The operator can intervene in this entire

process at all times.

Note that, though this method avoids frequent pump

activations and pumping at peak energy costs, it does not

guarantee such behavior. Moreover, the amount of

parameters that need to be manually chosen is large,

which could potentially lead to suboptimal performance.

Historical data

In order to compare the method presented in this work to

the logic-based controller of the Waterlandse Boezem, we

have acquired historical rainfall and the corresponding

pump activation (computed by the logic-based controller).

Figure 7 shows these measurement data of the Water-

landse Boezem over a window of 36 hr, starting from

midnight 24 August 2011. Note that there has been con-

siderable rainfall over this window, which makes the

data suitable for a simulation study. In these computations

the total simulation time is equal to the prediction

window.

Figure 7 | Results of a pump schedule computation with a given load prediction Ql(t) on

an interval t∈[0, 36] (upper graph), measured on 24 August 2011. High-cost

energy hours are between 7 am and 11 pm (intervals [7, 23] and [31, 36]). The

lower graph shows the pump schedule computed by DNPC and the current

controller. The middle graph presents the corresponding water-level predic-

tions with its boundaries [!1.55, !1.53].
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The water levels over the prediction window, simulated

by the continuous model (1), have been computed for the

pump flow computed by the logic-based controller and the

NMPC scheme. At time zero, the measured water level is

higher than the upper bound wþ, which forces both

methods to pump a considerable amount more than the

total volume of rainfall. The logic-based controller pumps

a total of 849,924.0 m3, of which 731,056.5 m3 are during

high-cost energy hours. The proposed NMPC method

pumps a total of 550,206.0 m3, where 215,311.5 m3 are allo-

cated during peak hours. The latter approach pumps a total

of 14.0% less, and pumps 60.9% less at the highest energy

cost. Such a performance indicates that our controller can

be successful for real-time control of the Waterlandse

Boezem. However, these simulations have been carried

out with the internal model of the NMPC scheme, while

the pump flow of the logic-based controller was obtained

from measurements. It can be expected that the gap in per-

formance between these two controllers is reduced when

applying them both in practice.

CONCLUSION AND DISCUSSION

Applying MPC to hybrid water systems involves dealing with

discontinuities in the modeled pump demand caused by

requirements A1–A3 and B1–B3. An alternative to advanced

optimization techniques approximates the system by smooth-

ing these jumps. Such an approach yields a continuous,

though highly nonlinear model. Optimal pump schedules of

the approximated system can be computed by NMPC. In a

final post-processing step, these schedules can be altered so

they correspond to the original hybrid system. The NMPC

method proposed in this work computes, revises and applies

these optimal pump schedules at a fixed sample rate.

As shown, an optimized NMPC implementation called

DNPC can be used to execute the presented scheme. The

NMPC scheme showed significant improvements over a

classical feedback and a logic-based controller (in terms of

energy use) in numerical simulations of the Waterlandse

Boezem. Though these results suggest that the outlined con-

troller would be successful in a real-life implementation,

there are a few factors that could potentially diminish its per-

formance (compared with other methods). The simulations

are carried out with the internal model of the NMPC

method, i.e. the process is assumed to behave exactly as

the reservoir model. Moreover, the load prediction is

assumed to be exact, which implies weather predictions

are always correct. In practice, neither of these assumptions

is valid: there are many physical aspects not taken into

account by the simple reservoir model (1), and the load fore-

casts have a stochastic component. Though the NMPC

scheme has guaranteed robustness and stability, these sim-

plifications might have amplified its performance.

A situation that has not been addressed in this paper is the

handling of extreme events. MPC methods, like the one intro-

duced here, typically excel in such cases, since they can spread

resources to avoid pumping at maximum capacity. For

instance, in the case of an upcoming storm with net inflow

larger than the combined flow of all pumps, the controller

will initiate pumping before the storm arrives, and thereby

avoids a flood caused by pumping after the fact at full capacity.

At the time of writing, the presented scheme has not been

fully operational at the Waterlandse Boezem. The true per-

formance of the NMPC scheme will be evident after it has

actively controlled the system and measurement data are

available. As mentioned, similar MPC methods have been

developed (Van Overloop et al. ; Van Ekeren et al.

). A comparison with these methods, in terms of perform-

ance indicators such as energy consumption, water level and

computation time, will lead to a more decisive evaluation of

the NMPC method outlined in this work.
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